Off-diagonal Bethe ansatz and exact solution of a topological spin ring.

نویسندگان

  • Junpeng Cao
  • Wen-Li Yang
  • Kangjie Shi
  • Yupeng Wang
چکیده

A general method is proposed for constructing the Bethe ansatz equations of integrable models without U(1) symmetry. As an example, the exact spectrum of the XXZ spin ring with a Möbius-like topological boundary condition is derived by constructing a modified T-Q relation based on the functional connection between the eigenvalues of the transfer matrix and the quantum determinant of the monodromy matrix. With the exact solution, the elementary excitations of the topological XX spin ring are discussed in detail. It is found that the excitation spectrum indeed shows a nontrivial topological nature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bethe Ansatz solution of the open XX spin chain with nondiagonal boundary terms

We consider the integrable open XX quantum spin chain with nondiagonal boundary terms. We derive an exact inversion identity, using which we obtain the eigenvalues of the transfer matrix and the Bethe Ansatz equations. For generic values of the boundary parameters, the Bethe Ansatz solution is formulated in terms of Jacobian elliptic functions.

متن کامل

Exact solution for the spin-s XXZ quantum chain with non-diagonal twists

We study integrable vertex models and quantum spin chains with toroidal boundary conditions. An interesting class of such boundaries is associated with non-diagonal twist matrices. For such models there are no trivial reference states upon which a Bethe ansatz calculation can be constructed, in contrast to the well-known case of periodic boundary conditions. In this paper we show how the transf...

متن کامل

Exact solution of the A ( 1 ) n − 1 trigonometric vertex model with non - diagonal open boundaries

The A (1) n−1 trigonometric vertex model with generic non-diagonal boundaries is studied. The double-row transfer matrix of the model is diagonalized by algebraic Bethe ansatz method in terms of the intertwiner and the corresponding face-vertex relation. The eigenvalues and the corresponding Bethe ansatz equations are obtained. PACS: 03.65.Fd; 05.30.-d; 05.50+q

متن کامل

Exact solution of the XXZ Gaudin model with generic open boundaries

The XXZ Gaudin model with generic integerable boundaries specified by generic non-diagonal K-matrices is studied. The commuting families of Gaudin operators are diagonalized by the algebraic Bethe ansatz method. The eigenvalues and the corresponding Bethe ansatz equations are obtained. PACS: 03.65.Fd; 04.20.Jb; 05.30.-d; 75.10.Jm

متن کامل

Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz

We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 111 13  شماره 

صفحات  -

تاریخ انتشار 2013